Convergence in the Design of Final Palaeolithic, Mesolithic and Ethnographic Projectile Points

Kamil Serwatka*

* Independent researcher, Email:

Cite as Serwatka, K. (2022). Convergence in the Design of Final Palaeolithic, Mesolithic and Ethnographic Projectile Points. Litikum – Journal of the Lithic Research Roundtable, 10, pp. 31–44.

Abstract. In traditional hunting and gathering societies, it is a common practice to fashion projectiles for different purposes. The spectrum of the available morphologies for projectiles and their tips is dictated by several kinds of constraints such as aerodynamic and mechanical properties, different hunting strategies, the available game or the range of the shot. This article focuses on a particular aspect of duality in primitive projectile technology interpreted with a fitness landscape model. Using geometric morphometric analysis, the author argues that the duality in projectile morphology and performance characteristics observed in the studied projectile weapon systems is the result of technological and physical constraints placed upon primitive projectile technology. For a more comprehensive explanation of this phenomenon, an optimality model explaining the development of flexible projectile weapon systems is proposed.

Keywords: Projectile Technology, Convergence, Geometric-Morphometrics, Fitness landscape, Projectile Points, Ethnographic Analogies, Final Palaeolithic, Mesolithic

Data availability statement: The author[s] confirm[s] that the data supporting the findings of this study are available within the article [and/or] its supplementary materials.

Disclosure statement: No potential conflict of interest was reported by the author.

Funding statement: The author received no financial support for the research and/or the publication of this article.

Copyright: This is an open access article distributed under the terms of a Creative Commons Attribution-NonCommercial-ShareAlike International Public License (CC BY-NC-SA 4.0). You are free to copy and redistribute the material in any medium or format, and transform the material, under the following terms: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.

Creative Commons License

List of references

Adami, C. (2012). Adaptive walks on the fitness landscape of music. Proceedings of the National Academy of Sciences, 109(30), pp. 11898–11899.

Azevedo, S., Charlin, J. & Gonzalez-Jose, R. (2014). Identifying design and reduction effects on lithic projectile point shapes, Journal of Archaeological Science, 41, pp. 297–307.

Bartram, L.E. (1997). A Comparison of Kua (Botswana) and Hadza (Tanzania) Bow and Arrow Hunting. In: H. Knecht (ed). Projectile Technology. New York: Plenum, pp. 321–345.

Borrell, F. & Stefanisko, D. (2016). Reconstructing projectile technology during the prepottery Neolithic B in the Levant: an integrated approach to large tanged points from Halula. Journal of Archaeological Science, 69, pp. 130–142.

Buchanan B. & Collard M. (2010). A geometric morphometrics-based assessment of blade shape differences among Paleoindian projectile point types from western North America, Journal of Archaeological Science, 37, pp. 350–359.

Burke, E. H. (1954). Archery Handbook. New York: Arco.

Charlin, J. & Gonzalez-Jose, R. (2018). Testing an ethnographic analogy through geometric morphometrics: A comparison between ethnographic arrows and archaeological projectile points from Late Holocene Fuego-Patagonia. Journal of Anthropological Archaeology, 51, pp. 159–172.

Charlin, J. & Cardillo, M. (2018). Reduction constrains and Shape Convergence along Tool Ontogenetic Trajectories: An Example from Late Holocene Projectile Points from Southern Patagonia In: M. J. O’Brien, B. Buchanan & M. I. Eren (eds). Convergent Evolution in Stone Tool Technology. Cambridge: The MIT Press, pp. 109–130.

Christenson, A. (1986). Projectile point size and projectile aerodynamics: an exploratory study. Plains Anthropologist, 31, pp. 109–128.

Churchill, S.E., Rhodes, J.A., (2009). The Evolution of the Human Capacity for “Killing at a Distance”: The Human Fossil Evidence for the Evolution of Projectile Weaponry In: J. J. Hublin & M. P. Richards (eds). The Evolution of Hominin Diets: Integrating Approaches to the Study of Palaeolithic Subsistence. Dordrecht: Springer, pp. 201–210.

Cotterell, B. & Kamminga, J. (1992). Bow and arrow. In: B. Cotterell & J. Kamminga. Mechanics of Pre-lndustrial Technology. Cambridge: Cambridge University Press, pp. 180–193.

Cundy, B. J. (1989). Formal Variation in Australian Spear and Spearthrower Technology. Oxford: Archaeopress (BAR International Series Vol. 546).

Dawkins, R. (1990). The Extended Phenotype: The Long Reach of the Gene. Oxford: Oxford University Press.

Dunnell, R. C. (1980). Evolutionary Theory and Archaeology, In: M. B. Schiffer (ed). Advances in Archaeological Method and Theory, Vol. 3. New York: Academic Press, pp. 35–93.

Groucutt, H. (2020). Into the Tangled Web of Culture-History and Convergent Evolution. In: H. Groucutt (ed). Culture History and Convergent Evolution. Can We Detect Populations in Prehistory? Dordrecht: Springer Nature (Vertabrate Palaeobiology and Palaeoanthropology Series), pp. 1–13.

Groucutt, H. (ed.) (2020). Culture History and Convergent Evolution. Can We Detect Populations in Prehistory? Dordrecht: Springer Nature (Vertabrate Palaeobiology and Palaeoanthropology Series).

Griffin, P. B. (1997). Technology and variation in arrow design among the Agta of Northeastern Luzon. In: H. Knecht (ed). Projectile Technology. New York: Plenum, pp. 267–287.

Gurina, I. (1956). Oleneostrovski’ mogilnik. Moscow: Akademiya Nauk (Matrialy i issledovaniya po arheologi’ SSSR, No. 47).

Hammer, Ø. & Harper, D.A.T. (2006). Paleontological Data Analysis. Oxford: Blackwell.

Hammer, Ø., Harper, D.A.T. & Ryan, P.D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron, 4, (article 4)

Hamilton, T.M. (1982). Native American Bows. Springfield: Missouri Archaeological Society (Missouri Archaeological Society Special Publication nr 5).

Hitchcock, R.K. & Bleed, P. (1997). Each according to need and fashion: Spear and arrow use among !Kung hunters of the Kalahari In: H. Knecht (ed). Projectile Technology. New York: Plenum, pp. 345–368.

Hughes, S. (1998). Getting to the Point: Evolutionary Change in Prehistoric Weaponry. Journal of Archaeological Method and Theory, 5, pp. 345–408.

Jones, G. T., Leonard R. D. & Abbott, A. (1995). The structure of selectionists explanation in archaeology. In: P.A. Teltser (ed). Evolutionary Archaeology: Methodological Issues. Tucson: University of Arizona Press, pp. 13–32.

Jungers, W. L., Falsetti, A. B. & Wall, C. E. (1995). Shape, relative size, and size-adjustments in morphometrics. American Journal of Physical Anthropology, 38, pp. 137–161.

Klopsteg, P. E. (1943). Physics of bow and arrows. American Journal of Physics, 11, pp. 175-192.

Kuhn, S. & Miller, S. D. (2015). Artifacts as Patches: The Marginal Value Theoremand Stone Tool Life Histories In: N. Goodale & W. Andrefsky, Jr. (eds). Lithic Technological Systems and Evolutionary Theory. Cambridge: Cambridge University Press, pp. 172–197.

Laue, C. & Wright, A. (2019). Landscape Revolutions for Cultural Evolution: Integrating Advanced Fitness Landscapes into the Study of Cultural Change. In: A. M. Prentiss (ed). Handbook of Evolutionary Research in Archaeology. Cham: Springer, pp. 127–149.

Leonard, R. D. & Jones, G. T. (1987). Elements of an Inclusive Evolutionary Model for Archaeology. Journal of Anthropological Archaeology, 6, pp. 199–219.

Lyman, R. L. & O’Brien, M. J. (1998). The Goals of Evolutionary Archaeology: History and Explanation. Current Anthropology, 39, pp. 615–662.

Lyman, R. L., O’Brien, M. J. & Dunnell, R. C. (1997). The Rise and Fall of Culture History. New York: Plenum

McCanlish, D. M. (2011). Visualizing Fitness Lanscapes. Evolution, 65(6), pp. 1544–1558.

McGhee, G.R. (2006). The Geometry of Evolution. Adaptive Landscape and Theoretical Morphospaces. Cambridge: Cambridge University Press.

McGhee, G. R. (1999). Theoretical Morphology: The Concept and Its Applications. New York: Columbia University Press

McGhee, G. R. (2011). Convergent Evolution: Limited Forms Most Beautiful. Cambridge, Massechusets: The MIT Press.

McGhee, G. R. (2018). Limits on the Possible Forms of Stone Tools: A Perspective from Convergent Biological Evolution. In: M. J. O’Brien, B. Buchanan & M. I. Eren (eds). Convergent Evolution in Stone Tool Technology. Cambridge: The MIT Press, pp. 23–47.

Mitteroecker, P. & Hutteger, S. M. (2009). The Concept of Morphospaces in Evolutionary and Developmental Biology: Mathematics and Metaphors. Biological Theory, 4(1), pp. 54–67.

O’Brien, M. J. & Holland T. D. (1995). Behavioural Archaeology and the Extended Phenotype In: J. M., Skibo, W.H. Walker & A.E. Nielsen (eds). Expanding Archaeology. Salt Lake City: University of Utah Press, pp. 143–161.

O’Brien, M. J., Boulanger, M., Buchanan, B., Collard, M., Lyman, R. L. & Darwent, J. (2014). Innovation and cultural transmission in the American Paleolithic: Phylogenetic analysis of eastern Paleoindian projectile-point classes. Journal of Anthropological Archaeology, 34, pp. 100–119.

O’Brien, M. J., Buchanan, B. & Eren, M. I. (eds) (2018). Convergent Evolution in Stone Tool Technology. Cambridge: The MIT Press.

O’Brien, M. J., Buchanan, B. & Eren, M. I. (2018). Issues of Archaeological studies of Convergence In: M. J. O’Brien, B. Buchanan & M. I. Eren (eds). Convergent Evolution in Stone Tool Technology. Cambridge: The MIT Press, pp. 3–20.

O’Connell, J. F. & Hawkes, I.C. (1988). Hadza hunting, butchering, and bone transport and their archaeological implications. Journal of Anthropological Research, 44, pp. 113–161.

Petrequin, P. & Petrequin, A.-M. (1990). Fleches de Chasse, Fleches de Guerre. Le Cas des Danisd’lrian Jaya (Indonesie). Bulletin de la Societe Prehistorique Francaise, 87, pp. 484–511.

Rohlf, F. J. & Slice, D. (1990). Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Biology, 39, pp. 40–59.

Serwatka, K. (2018). What’s Your Point? Flexible Projectile Weapon System in the Central European Final Palaeolithic. The Case of Swiderian Points. Journal of Archaeological Science: Reports, 17, pp. 263–278.

Serwatka, K. & Riede, F. (2016). 2D geometric morphometric analysis casts doubt on the validity of large tanged points as cultural markers in the European Final Palaeolithic. Journal of Archaeological Science: Reports, 9, pp. 150–159.

Sheets, H. D., Covino, K. M., Panasiewicz, J. M. & Morris, S. R. (2006). Comparison of geometric morphometric outline methods in the discrimination of age-related differences in feather shape. Frontiers in Zoology, 3, pp. 1–12.

Smallwood, A. M., Smith, H. L., Pevny, C. D. & Jennings, T. (2018). The convergent evolution of serrated points on the Southern Plains-Woodland boarder of Central North America In: M. J. O’Brien, B. Buchanan & M. I. Eren (eds). Convergent Evolution in Stone Tool Technology. Cambridge: The MIT Press, pp. 203–229.

Turner, J. S. (2000). The Extended Organism: The Physiology of Animal Built structures. Cambridge: Harvard University Press

Van Cleve, J. & Weissman, D. B. (2015). Measuring ruggedness in fitness landscapes. Proceedings of the National Academy of Sciences, 112(24), pp. 7345–7346.

Verbicky-Todd, E. (1984). Communal Buffalo Hunting Among the Plains Indians. Alberta: Archaeological Survey of Alberta (Archaeological Survey of Alberta Occasional Paper No. 24)

Witthoft, J. (1968). Flint arrowpoints from the Eskimo of northwestern Alaska. Expedition, 10(2), pp. 30–37.

Wright, S. (1932). The Roles of Mutation, Inbreeding, Crossbreeding and Selection in Evolution. Proceedings of the Sixth Annual Congress of Genetics 1, pp. 356–366. Reprint in: W. B. Provine (ed). Sewall Wright, Evolution: Selected Papers. Chicago: University of Chicago Press, pp. 161–177.