Convergence in the Design of Final Palaeolithic, Mesolithic and Ethnographic Projectile Points

Kamil Serwatka*

* Independent researcher, Email: kamserw@gmail.com


Cite as Serwatka, K. (2022). Convergence in the Design of Final Palaeolithic, Mesolithic and Ethnographic Projectile Points. Litikum – Journal of the Lithic Research Roundtable, 10, pp. 31–44.  https://doi.org/10.23898/litikuma0033

Abstract. In traditional hunting and gathering societies, it is a common practice to fashion projectiles for different purposes. The spectrum of the available morphologies for projectiles and their tips is dictated by several kinds of constraints such as aerodynamic and mechanical properties, different hunting strategies, the available game or the range of the shot. This article focuses on a particular aspect of duality in primitive projectile technology interpreted with a fitness landscape model. Using geometric morphometric analysis, the author argues that the duality in projectile morphology and performance characteristics observed in the studied projectile weapon systems is the result of technological and physical constraints placed upon primitive projectile technology. For a more comprehensive explanation of this phenomenon, an optimality model explaining the development of flexible projectile weapon systems is proposed.

Keywords: Projectile Technology, Convergence, Geometric-Morphometrics, Fitness landscape, Projectile Points, Ethnographic Analogies, Final Palaeolithic, Mesolithic

Data availability statement: The author[s] confirm[s] that the data supporting the findings of this study are available within the article [and/or] its supplementary materials.

Disclosure statement: No potential conflict of interest was reported by the author.

Funding statement: The author received no financial support for the research and/or the publication of this article.

Copyright: This is an open access article distributed under the terms of a Creative Commons Attribution-NonCommercial-ShareAlike International Public License (CC BY-NC-SA 4.0). You are free to copy and redistribute the material in any medium or format, and transform the material, under the following terms: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.

Creative Commons License


List of references

Adami, C. (2012). Adaptive walks on the fitness landscape of music. Proceedings of the National Academy of Sciences, 109(30), pp. 11898–11899. https://doi.org/10.1073/pnas.1209301109

Azevedo, S., Charlin, J. & Gonzalez-Jose, R. (2014). Identifying design and reduction effects on lithic projectile point shapes, Journal of Archaeological Science, 41, pp. 297–307. https://doi.org/10.1016/j.jas.2013.08.013

Bartram, L.E. (1997). A Comparison of Kua (Botswana) and Hadza (Tanzania) Bow and Arrow Hunting. In: H. Knecht (ed). Projectile Technology. New York: Plenum, pp. 321–345. https://doi.org/10.1007/978-1-4899-1851-2_13

Borrell, F. & Stefanisko, D. (2016). Reconstructing projectile technology during the prepottery Neolithic B in the Levant: an integrated approach to large tanged points from Halula. Journal of Archaeological Science, 69, pp. 130–142. https://doi.org/10.1016/j.jas.2016.04.005

Buchanan B. & Collard M. (2010). A geometric morphometrics-based assessment of blade shape differences among Paleoindian projectile point types from western North America, Journal of Archaeological Science, 37, pp. 350–359. https://doi.org/10.1016/j.jas.2009.09.047

Burke, E. H. (1954). Archery Handbook. New York: Arco.

Charlin, J. & Gonzalez-Jose, R. (2018). Testing an ethnographic analogy through geometric morphometrics: A comparison between ethnographic arrows and archaeological projectile points from Late Holocene Fuego-Patagonia. Journal of Anthropological Archaeology, 51, pp. 159–172. https://doi.org/10.1016/j.jaa.2018.06.008

Charlin, J. & Cardillo, M. (2018). Reduction constrains and Shape Convergence along Tool Ontogenetic Trajectories: An Example from Late Holocene Projectile Points from Southern Patagonia In: M. J. O’Brien, B. Buchanan & M. I. Eren (eds). Convergent Evolution in Stone Tool Technology. Cambridge: The MIT Press, pp. 109–130. https://doi.org/10.7551/mitpress/11554.003.0013

Christenson, A. (1986). Projectile point size and projectile aerodynamics: an exploratory study. Plains Anthropologist, 31, pp. 109–128. https://doi.org/10.1080/2052546.1986.11909324

Churchill, S.E., Rhodes, J.A., (2009). The Evolution of the Human Capacity for “Killing at a Distance”: The Human Fossil Evidence for the Evolution of Projectile Weaponry In: J. J. Hublin & M. P. Richards (eds). The Evolution of Hominin Diets: Integrating Approaches to the Study of Palaeolithic Subsistence. Dordrecht: Springer, pp. 201–210. https://doi.org/10.1007/978-1-4020-9699-0_15

Cotterell, B. & Kamminga, J. (1992). Bow and arrow. In: B. Cotterell & J. Kamminga. Mechanics of Pre-lndustrial Technology. Cambridge: Cambridge University Press, pp. 180–193.

Cundy, B. J. (1989). Formal Variation in Australian Spear and Spearthrower Technology. Oxford: Archaeopress (BAR International Series Vol. 546). https://doi.org/10.30861/9780860546931

Dawkins, R. (1990). The Extended Phenotype: The Long Reach of the Gene. Oxford: Oxford University Press.

Dunnell, R. C. (1980). Evolutionary Theory and Archaeology, In: M. B. Schiffer (ed). Advances in Archaeological Method and Theory, Vol. 3. New York: Academic Press, pp. 35–93. https://doi.org/10.1016/B978-0-12-003103-0.50007-1

Groucutt, H. (2020). Into the Tangled Web of Culture-History and Convergent Evolution. In: H. Groucutt (ed). Culture History and Convergent Evolution. Can We Detect Populations in Prehistory? Dordrecht: Springer Nature (Vertabrate Palaeobiology and Palaeoanthropology Series), pp. 1–13. https://doi.org/10.1007/978-3-030-46126-3

Groucutt, H. (ed.) (2020). Culture History and Convergent Evolution. Can We Detect Populations in Prehistory? Dordrecht: Springer Nature (Vertabrate Palaeobiology and Palaeoanthropology Series). https://doi.org/10.1007/978-3-030-46126-3

Griffin, P. B. (1997). Technology and variation in arrow design among the Agta of Northeastern Luzon. In: H. Knecht (ed). Projectile Technology. New York: Plenum, pp. 267–287. https://doi.org/10.1007/978-1-4899-1851-2_11

Gurina, I. (1956). Oleneostrovski’ mogilnik. Moscow: Akademiya Nauk (Matrialy i issledovaniya po arheologi’ SSSR, No. 47).

Hammer, Ø. & Harper, D.A.T. (2006). Paleontological Data Analysis. Oxford: Blackwell. https://doi.org/10.1002/9780470750711

Hammer, Ø., Harper, D.A.T. & Ryan, P.D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron, 4, (article 4)

Hamilton, T.M. (1982). Native American Bows. Springfield: Missouri Archaeological Society (Missouri Archaeological Society Special Publication nr 5).

Hitchcock, R.K. & Bleed, P. (1997). Each according to need and fashion: Spear and arrow use among !Kung hunters of the Kalahari In: H. Knecht (ed). Projectile Technology. New York: Plenum, pp. 345–368. https://doi.org/10.1007/978-1-4899-1851-2_14

Hughes, S. (1998). Getting to the Point: Evolutionary Change in Prehistoric Weaponry. Journal of Archaeological Method and Theory, 5, pp. 345–408. https://doi.org/10.1007/BF02428421

Jones, G. T., Leonard R. D. & Abbott, A. (1995). The structure of selectionists explanation in archaeology. In: P.A. Teltser (ed). Evolutionary Archaeology: Methodological Issues. Tucson: University of Arizona Press, pp. 13–32.https://doi.org/10.2307/j.ctv2jhjvh6.4

Jungers, W. L., Falsetti, A. B. & Wall, C. E. (1995). Shape, relative size, and size-adjustments in morphometrics. American Journal of Physical Anthropology, 38, pp. 137–161. https://doi.org/10.1002/ajpa.1330380608

Klopsteg, P. E. (1943). Physics of bow and arrows. American Journal of Physics, 11, pp. 175-192. https://doi.org/10.1119/1.1990474

Kuhn, S. & Miller, S. D. (2015). Artifacts as Patches: The Marginal Value Theoremand Stone Tool Life Histories In: N. Goodale & W. Andrefsky, Jr. (eds). Lithic Technological Systems and Evolutionary Theory. Cambridge: Cambridge University Press, pp. 172–197. https://doi.org/10.1017/CBO9781139207775.014

Laue, C. & Wright, A. (2019). Landscape Revolutions for Cultural Evolution: Integrating Advanced Fitness Landscapes into the Study of Cultural Change. In: A. M. Prentiss (ed). Handbook of Evolutionary Research in Archaeology. Cham: Springer, pp. 127–149. https://doi.org/10.1007/978-3-030-11117-5_7

Leonard, R. D. & Jones, G. T. (1987). Elements of an Inclusive Evolutionary Model for Archaeology. Journal of Anthropological Archaeology, 6, pp. 199–219. https://doi.org/10.1016/0278-4165(87)90001-8

Lyman, R. L. & O’Brien, M. J. (1998). The Goals of Evolutionary Archaeology: History and Explanation. Current Anthropology, 39, pp. 615–662. https://doi.org/10.1086/204786

Lyman, R. L., O’Brien, M. J. & Dunnell, R. C. (1997). The Rise and Fall of Culture History. New York: Plenum

McCanlish, D. M. (2011). Visualizing Fitness Lanscapes. Evolution, 65(6), pp. 1544–1558. https://doi.org/10.1111/j.1558-5646.2011.01236.x

McGhee, G.R. (2006). The Geometry of Evolution. Adaptive Landscape and Theoretical Morphospaces. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511618369

McGhee, G. R. (1999). Theoretical Morphology: The Concept and Its Applications. New York: Columbia University Press

McGhee, G. R. (2011). Convergent Evolution: Limited Forms Most Beautiful. Cambridge, Massechusets: The MIT Press. https://doi.org/10.7551/mitpress/9780262016421.001.0001

McGhee, G. R. (2018). Limits on the Possible Forms of Stone Tools: A Perspective from Convergent Biological Evolution. In: M. J. O’Brien, B. Buchanan & M. I. Eren (eds). Convergent Evolution in Stone Tool Technology. Cambridge: The MIT Press, pp. 23–47. https://doi.org/10.7551/mitpress/11554.003.0007

Mitteroecker, P. & Hutteger, S. M. (2009). The Concept of Morphospaces in Evolutionary and Developmental Biology: Mathematics and Metaphors. Biological Theory, 4(1), pp. 54–67. https://doi.org/10.1162/biot.2009.4.1.54

O’Brien, M. J. & Holland T. D. (1995). Behavioural Archaeology and the Extended Phenotype In: J. M., Skibo, W.H. Walker & A.E. Nielsen (eds). Expanding Archaeology. Salt Lake City: University of Utah Press, pp. 143–161.

O’Brien, M. J., Boulanger, M., Buchanan, B., Collard, M., Lyman, R. L. & Darwent, J. (2014). Innovation and cultural transmission in the American Paleolithic: Phylogenetic analysis of eastern Paleoindian projectile-point classes. Journal of Anthropological Archaeology, 34, pp. 100–119. https://doi.org/10.1016/j.jaa.2014.03.001

O’Brien, M. J., Buchanan, B. & Eren, M. I. (eds) (2018). Convergent Evolution in Stone Tool Technology. Cambridge: The MIT Press. https://doi.org/10.7551/mitpress/11554.001.0001

O’Brien, M. J., Buchanan, B. & Eren, M. I. (2018). Issues of Archaeological studies of Convergence In: M. J. O’Brien, B. Buchanan & M. I. Eren (eds). Convergent Evolution in Stone Tool Technology. Cambridge: The MIT Press, pp. 3–20. https://doi.org/10.7551/mitpress/11554.003.0005

O’Connell, J. F. & Hawkes, I.C. (1988). Hadza hunting, butchering, and bone transport and their archaeological implications. Journal of Anthropological Research, 44, pp. 113–161. https://doi.org/10.1086/jar.44.2.3630053

Petrequin, P. & Petrequin, A.-M. (1990). Fleches de Chasse, Fleches de Guerre. Le Cas des Danisd’lrian Jaya (Indonesie). Bulletin de la Societe Prehistorique Francaise, 87, pp. 484–511. https://doi.org/10.3406/bspf.1990.9931

Rohlf, F. J. & Slice, D. (1990). Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Biology, 39, pp. 40–59. https://doi.org/10.2307/2992207

Serwatka, K. (2018). What’s Your Point? Flexible Projectile Weapon System in the Central European Final Palaeolithic. The Case of Swiderian Points. Journal of Archaeological Science: Reports, 17, pp. 263–278. https://doi.org/10.1016/j.jasrep.2017.10.048

Serwatka, K. & Riede, F. (2016). 2D geometric morphometric analysis casts doubt on the validity of large tanged points as cultural markers in the European Final Palaeolithic. Journal of Archaeological Science: Reports, 9, pp. 150–159. https://doi.org/10.1016/j.jasrep.2016.07.018

Sheets, H. D., Covino, K. M., Panasiewicz, J. M. & Morris, S. R. (2006). Comparison of geometric morphometric outline methods in the discrimination of age-related differences in feather shape. Frontiers in Zoology, 3, pp. 1–12. https://doi.org/10.1186/1742-9994-3-15

Smallwood, A. M., Smith, H. L., Pevny, C. D. & Jennings, T. (2018). The convergent evolution of serrated points on the Southern Plains-Woodland boarder of Central North America In: M. J. O’Brien, B. Buchanan & M. I. Eren (eds). Convergent Evolution in Stone Tool Technology. Cambridge: The MIT Press, pp. 203–229. https://doi.org/10.7551/mitpress/11554.003.0018

Turner, J. S. (2000). The Extended Organism: The Physiology of Animal Built structures. Cambridge: Harvard University Press

Van Cleve, J. & Weissman, D. B. (2015). Measuring ruggedness in fitness landscapes. Proceedings of the National Academy of Sciences, 112(24), pp. 7345–7346. https://doi.org/10.1073/pnas.1507916112

Verbicky-Todd, E. (1984). Communal Buffalo Hunting Among the Plains Indians. Alberta: Archaeological Survey of Alberta (Archaeological Survey of Alberta Occasional Paper No. 24)

Witthoft, J. (1968). Flint arrowpoints from the Eskimo of northwestern Alaska. Expedition, 10(2), pp. 30–37.

Wright, S. (1932). The Roles of Mutation, Inbreeding, Crossbreeding and Selection in Evolution. Proceedings of the Sixth Annual Congress of Genetics 1, pp. 356–366. Reprint in: W. B. Provine (ed). Sewall Wright, Evolution: Selected Papers. Chicago: University of Chicago Press, pp. 161–177.